

2-NITROIMIDAZOL-5-YLMETHYL AS A POTENTIAL BIOREDUCTIVELY ACTIVATED PRODRUG SYSTEM: REDUCTIVELY TRIGGERED RELEASE OF THE PARP INHIBITOR 5-BROMOISOQUINOLINONE

Ifat Parveena, Declan P. Naughtonb, William J. D. Whishand Michael D. Threadgillata

^a Department of Pharmacy & Pharmacology, ^b School of Postgraduate Medicine, ^c Department of Biology &

Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK.

Received 19 April 1999; accepted 2 June 1999

Abstract: 5-Chloromethyl-1-methyl-2-nitroimidazole reacted efficiently with the anion derived from 5-bromo-isoquinolin-1-one to give 5-bromo-2-((1-methyl-2-nitroimidazol-5-yl)methyl)isoquinolin-1-one. Biomimetic reduction effected release of the 5-bromoisoquinolin-1-one. The 2-nitroimidazol-5-ylmethyl unit thus has potential for development as a general prodrug system for selective drug delivery to hypoxic tissues. © 1999 Elsevier Science Ltd. All rights reserved.

Introduction

Owing to the primitive state of the tumour vasculature, most solid tumours have regions with acute or chronic hypoxia^{1,2}. In these hypoxic tissues, viable cells are relatively resistant to radiotherapy and to many chemotherapeutic strategies^{1,2}. Much effort has been expended on development of bioreductively activated cytotoxins for selective therapy of this tissue and of various prodrugs to deliver drugs selectively to tumours^{3,6}. 1-Substituted-2-nitro-imidazoles are selectively retained in hypoxic tumour tissue by reductive metabolism^{7,9}. It is only recently that attention has been focussed on exploiting the physiological difference in concentration of O₂ between normal and hypoxic tumour tissue by design of biologically inactive prodrug systems which, upon selective bioreduction in hypoxic tissue, would *release* known therapeutic drugs only in that tissue. This would improve greatly the selectivity of biodistribution of such agents. Denny has described^{10,11} such prodrugs as comprising Trigger, Linker and Effector

e-mail: m.d.threadgill@bath.ac.uk; FAX: +44 1225 826114

units. In our previous papers ^{12,13}, we reported a potential general reductively activated prodrug system for delivery of isoquinolinones (e.g. 5), amines and diols, in which 2-nitrofuran was used as the redox-sensitive Trigger. Others have investigated indolequinones in this way ^{14,15}. The proposed mechanism for reductively triggered drug release is shown in Scheme 1 (X = O, Y = CH). The redox potentials of 2-nitrofurans are relatively high ($E^1_7 = -325$ mV for a 5-nitrofuran-3-carboxamide)⁴ for this application; those of 2-nitroimidazoles are more appropriate for selective bioreduction in hypoxic tumour tissue ($E^1_7 = -389$ mV for 1-alkyl-2-nitroimidazoles)⁴. We demonstrate here for the first time the potential of the 2-nitroimidazol-5-ylmethyl unit (Scheme 1: X = NR, Y = N) as a (bio)reductively cleaved masking group for a pharmacophore of importance as a poly(ADP-ribose)polymerase (PARP) inhibitor. Inhibition of PARP diminishes repair of DNA damaged by radiation; thus PARP inhibitors act as radiosensitisers.

Chemical Synthesis

The aminoimidazole ester 6 was diazotised and treated with nitrite ion in the presence of Cu to give the 2-nitro-imidazole 7 in 53% yield (Scheme 2). The ester was reduced selectively by lithium borohydride, affording the nitro-imidazole-methanol 8¹⁶. In initial preparations of the target nitroimidazolylmethylisoquinolinone 15, it was planned to use the corresponding 5-bromomethyl-2-nitroimidazole 9 as the alkylating electrophile; this was prepared¹⁷ by Mitsunobu-like reaction of the alcohol 8 with Ph₃PBr₂ (prepared *in situ* from Ph₃P and Br₂). However, this proved to be less effective than the corresponding 5-chloromethyl-2-nitroimidazole 10. This was synthesised¹⁸ by the reaction of 8 with methanesulfonyl chloride in pyridine, mesylation of the alcohol being followed by displacement of the leaving group with chloride ion.

EtO₂C
$$\stackrel{\text{Me}}{\stackrel{\text{N}}{\longrightarrow}}$$
 $\stackrel{\text{NH}_3}{\stackrel{\text{N}}{\longrightarrow}}$ $\stackrel{\text{i,ii}}{\longrightarrow}$ $\stackrel{\text{EtO}_2C}{\stackrel{\text{N}}{\longrightarrow}}$ $\stackrel{\text{NO}_2}{\longrightarrow}$ $\stackrel{\text{iii}}{\longrightarrow}$ $\stackrel{\text{NO}_2}{\longrightarrow}$ $\stackrel{\text{NO}_2}$

Scheme 2. Synthesis of the nitroimidazolylmethylisoquinolinone 15. Reagents and yields: i, NaNO₂, aq. HBF₄; ii, NaNO₂, Cu, 53%; iii, LiBH₄, THF, 57%; iv, Ph₃PBr₂, DMF, 17%; v, MsCl, pyridine, 70%; vi, H₂, Pd/C, THF, 99%; vii, NaNO₂, aq. H₂SO₄, KBr, CuBr, 35%; viii, NH₃, MeOCH₂CH₂OH, Δ , 71%; ix, LiN(SiMe₃)₂, 10, THF, DMF, 85%.

We have previously reported¹² the synthesis of the potent PARP inhibitor 5-bromoisoquinolinone 14 $(IC_{50} < 270 \text{ nM})^{19,20}$ by Curtius rearrangement of *E*-3-(2-bromophenyl)propenoic acid at 275°C and cyclisation of the intermediate isocyanate *in situ*. This process is not readily amenable to large-scale preparations of 14 and a new route to this isoquinolinone was developed. Catalytic hydrogenation of 5-nitroisocoumarin 11²¹ gave the aminoisocoumarin 12 in excellent yield²². This represented a considerable improvement over the procedure reported by Somei *et al.*²³ who used TiCl₃ as the reductant. Diazotisation and Sandmeyer reaction with bromide ion²⁴ afforded the previously unknown 5-bromoisocoumarin 13. Treatment with ammonia in boiling 2-methoxyethanol²⁵ replaced the isocoumarin oxygen, giving 14.

Isoquinolin-1-ones are readily deprotonated by strong non-nucleophilic bases and the resulting anions can be benzylated efficiently at nitrogen¹². The anion of 14 was formed readily with lithium hexamethyldisilazide but the reaction with the bromomethylnitroimidazole 9 was low yielding. In contrast, reaction²⁶ with the corresponding chloromethylnitroimidazole 10 gave the target prodrug 15 in 85% yield.

Reductively Triggered Release

In our previous studies^{12,13} of reductively activated release from 5-nitrofuran-2-ylmethyl prodrugs, two reductant systems were used to convert the nitrofuran to the aminofuran, mimicking bioreduction in hypoxic tissue. Both of these, sodium borohydride / palladium / aqueous methanol and tin (II) chloride were initially investigated as selective reductants for the nitro group of the prodrug 15. HPLC²⁷ was used to follow the reduction and release processes, using UV detection at 326 nm (8: $\lambda_{max} = 326$ nm; 14: $\lambda_{max} = 297$, 328 (weak) nm; 15: $\lambda_{max} = 297$, 326 nm).

Treatment of 15 with excess NaBH₄ and palladium on carbon²⁸ in aqueous propan-2-ol caused complete consumption of 15 within 10 min, as demonstrated by HPLC²⁷. A peak corresponding to the bromoisoquinolinone 14 was observed with retention time (RT) = 5.5 min, along with peaks at RT = 4.5 min and RT = 4.9 min. The HPLC trace after a reaction time of 2.5 h was similar. When, as a control, the bromoisoquinolinone 14 was treated with the NaBH₄ / Pd / aq. Pr'OH system, it was converted almost quantitatively to the peak with RT = 4.9 min, indicating that this was a product of reduction of the delivered drug 14. This material was shown by HPLC comparison and by NMR to be the 5-unsubstituted isoquinolinone 17. Interestingly, a similar, although less efficient, reductive debromination of 14 was observed on treatment with Pd/C alone in aq. PrⁱOH; this reduction may be effected by H₂ adsorbed onto the metal surface during manufacture. Thus, although 17 is released cleanly from 15 by this biomimetic reduction system, this system also carries out further (but non-biomimetic) degradation of the "delivered drug" 14. However, these studies suggested that 14 had been released upon reduction of 15.

Reduction of the nitro group of 15 with tin (II) chloride²⁹ was complete in less than 5 min, as shown by HPLC²⁷. Six new peaks were observed, mostly at shorter HPLC retention times (*i.e.* more polar). Similar patterns of peaks were observed after reaction times of 1 h and 2 h. However, no peak corresponding to 14 was present at any of these reaction times. A control experiment, treatment of 14 with SnCl₂, indicated that this material was completely unaffected by the reagent. Thus it is likely that the nitroimidazole has been reduced to the aminoimidazole 16a (or the hydroxylaminoimidazole 16b) by the SnCl₂ but that the tin has prevented release by complexation as a Lewis acid.

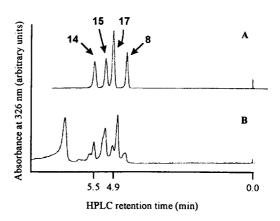


Figure 1. Typical HPLC chromatograms from the reductively triggered drug release study.

A: Synthetic standards; B: 15 + Zn / NH₄Cl (24 h).

Varghese and Whitmore³⁰ have used a zinc / ammonium chloride system as a mimic for bioreduction of misonidazole (1-(2-hydroxy-3-methoxypropyl)-2-nitroimidazole), noting that it produced both the aminoimidazole and the hydroxylaminoimidazole. This is appropriate for the present study, since both the imidazole-NH₂ and the imidazole-NHOH are likely products of bioreduction of the nitroimidazolylmethyl prodrugs. Control experiments showed that 15 was unaffected by zinc alone and by ammonium chloride alone. The "delivered drug" 14 was reduced only slowly by the Zn / NH₄Cl system, giving small amounts of 17 (HPLC²⁷ RT = 4.9 min) and very minor amounts of other materials. Varghese and Whitmore³⁰ noted that reduction of misonidazole was complete in 17 min. Treatment of 15 with the Zn / NH₄Cl system³¹ showed consumption of this prodrug after 20 min, with release of a small quantity of drug 14. Major peaks were observed at short retention times, probably due to reduction products of 15 from which the bromoisoquinolinone had not yet been released. Release of 14 was greater at 1 h. After 1 d and 2 d, peaks corresponding to 14 and its known degradation products (including 17) were strongly evident, along with peaks corresponding to a degradation product of the reduced nitroimidazole unit (Figure 1). The provenance of the latter was shown by treatment of an appropriate control nitroimidazole (the alcohol 8) with the Zn / NH₄Cl system. Figure 1 shows a typical chromatogram from this Zn / NH₄Cl reductively triggered release study.

Conclusions

In this *Letter*, we have described the synthesis of a potential prodrug 15 of 5-bromoisoquinolin-1-one 14, a potent inhibitor of poly(ADP-ribose)polymerase and thus of DNA repair. In this prodrug, the critical secondary amide pharmacophore is masked with 2-nitroimidazol-5-ylmethyl. Release of the drug 14 has been demonstrated in two chemical systems which mimic bioreduction. Scheme 3 shows the proposed mechanism for this release. Reduction of

the nitroimidazole gives the corresponding amine 16a and / or the hydroxylamine 16b. Now the increased electron-density can cause expulsion of the leaving group (the bromoisoquinolinone 14), according to the electron flow shown. We believe that this is the first literature report of a 2-nitroimidazole, a heterocycle which is known to be bioreduced selectively in hypoxic tumour tissue, to be used in this way.

Scheme 3. Reductive release of 5-bromoisoquinolinone 14 from the prodrug 15. Reagents: i, NaBH₄, Pd/C, PrOH, H₂O; ii, SnCl₂, MeOH; iii, Zn, NH₄Cl, MeOH.

Acknowledgements: The authors thank Mr. R. R. Hartell and Mr. D. J. Wood for the NMR spectra and Mr. C. Cryer for the mass spectra. We also thank Mr. J. A. Wright for discussion on the synthesis of 12. We are very grateful to the Association for International Cancer Research for financial support.

References and Notes

- 1. Vaupel, P.; Kallinowski, F.; Okunieff, P. Cancer Res. 1989, 49, 6449.
- 2. Okunieff, P.; Hoekel, M.; Dunphy, E. P.; Schlenger, K.; Knoop, C.; Vaupel, P. Int. J. Radiat. Oncol. Biol. Phys. 1993, 26, 631.
- 3. Kennedy, K. A.; Teicher, B. A.; Rockwell, S.; Sartorelli, A. C. Biochem. Pharmacol. 1980, 29, 1.
- Naylor, M. A.; Stephens, M. A.; Cole, S.; Threadgill, M. D.; Stratford, I. J.; O'Neill, P.; Fielden, E. M.; Adams, G. E. J. Med. Chem. 1990, 33, 2508.
- 5. Jenkins, T. C.; Naylor, M. A.; O'Neill, P.; Threadgill, M. D.; Cole, S.; Stratford, I. J.; Adams, G. E.; Fielden, E. M.; Suto, M. J.; Steir, M. J. J. Med. Chem. 1990, 33, 2603.
- 6. Sinhababu, A. K.; Thakker, D. R. Adv. Drug Delivery Rev. 1996, 19, 241.
- 7. Maxwell, R. J.; Workman, P.; Griffiths, R. J. Int. J. Radiat. Oncol. Biol. Phys. 1989, 16, 925.
- 8. Wood, P. J.; Scobie, M.; Threadgill, M. D. Int. J. Radiat. Biol. 1996, 70, 587.
- 9. Swenson, D. H.; Laster, B. H.; Metzger, R. L. J. Med. Chem. 1996, 39, 1540.
- 10. Tercel, M.; Wilson, W. R.; Anderson, R. F.; Denny, W. A. J. Med. Chem. 1996, 39, 1084.
- 11. Denny, W. A.; Wilson, W. R.; Hay M. P. Br. J. Cancer 1996, 74, S32.
- 12. Berry, J. M., Watson, C. Y., Whish, W. J. D., Threadgill, M. D. J. Chem. Soc., Perkin Trans. 1, 1997, 1147.
- 13. Mahmud, N. P.; Garrett, S. W.; Threadgill, M. D. Anti-Cancer Drug Design, 1998, 13, 655.
- 14. Jaffar, M.; Everett, S. A.; Naylor, M. A.; Moore, S. G.; Ulhaq, S.; Patel, K. B.; Stratford, M. R. L.; Nolan J.; Wardman, P.; Stratford, I. J. Bioorg. Med. Chem. Lett. 1999, 9, 113.
- Naylor, M. A.; Swann, E.; Everett, S. A.; Jaffar, M.; Nolan J.; Robertson, N.; Lockyer, S. D.; Patel, K. B.; Dennis, M. F.; Stratford, M. R. L.; Wardman, P.; Adams, G. E.; Moody, C. J.; Stratford, I. J. J. Med. Chem. 1998, 41, 2720.
- 16. Cavalleri, B.; Breccia, A.; Lancini, G. C. J. Heterocycl. Chem. 1972, 9, 979.
- 17. Br₂ (53 mg, 330 μ mol) was added to 8 (50 mg, 320 μ mol) and Ph₃P (90 mg, 343 μ mol) in DMF (1 mL) and the mixture was stirred for 16 h. Evaporation and preparative TLC (EtOAc / hexane 1:1) gave 9 (12 mg, 17%), pale yellow crystals: mp 84-87°C (decomp.); NMR (400 MHz, CDCl₃) δ 3.98 (3 H, s, NMe), 4.41 (2 H, s, CH₂), 7.13 (1 H, s, imidazole 4-H); MS (EI) m/z 220.9562 (M) (C₅H₆⁸¹BrN₃O₂ requires 220.9623), 218 (M) (C₅H₆⁷⁹BrN₃O₂ requires 218.9643), 140 (M Br).

- 18. MeSO₂Cl (50 mg, 480 μ mol) was stirred with 8 (50 mg, 320 μ mol) in pyridine (1.0 mL) for 3 h. The evaporation residue, in CHCl₃, was washed (aq. H₂SO₄, aq. NaHCO₃). Drying and evaporation gave 10 (39 mg, 70%), pale yellow solid: mp 94-96°C; NMR (CDCl₃) δ 4.00 (3 H, s, NMe), 4.55 (2 H, s, CH₂), 7.20 (1 H, s, imidazole 4-H); MS (EI) m/z 177.0131 (M) (C₅H₆³⁷ClN₃O₂ requires 177.0119), 175.0158 (M) (C₅H₆³⁵ClN₃O₂ requires 175:0149), 140 (M Cl).
- 19. Watson, C. Y.; Whish, W. J. D.; Threadgill, M. D. Bioorg. Med. Chem. 1998, 6, 721.
- 20. Watson, C. Y. PhD Thesis, University of Bath, 1997.
- 21. Matsui, T.; Sugiura, T.; Nakai, H.; Iguchi, S.; Shigeoka, S.; Takada, H.; Odagaki, Y.; Nagao, Y.; Ushio, Y.; Ohmoto, K.; Iwamura, H.; Yamazaki, S.; Arai, Y.; Kawamura, M. J. Med. Chem. 1992, 35, 3307.
- 22. 5-Nitroisocoumarin 11²¹ (2.98 g, 15.6 mmol) was treated with H₂ and Pd/C (10%, 370 mg) in THF (44 mL) and aq. HCl (2 M, 8 mL) for 6 h. Filtration (Celite[®]) and evaporation gave a residue which, in CH₂Cl₂, was washed (aq. NaHCO₃). Drying and evaporation gave 12 (2.49 g, 99%), yellow crystals: mp 185-187°C; (lit.²³ mp 194-195°C); NMR (CDCl₃) δ 4.00 (2 H, brs, NH₂), 6.44 (1 H, dd, *J* = 8.0, 0.5 Hz, 4-H), 7.02 (1 H, dd, *J* = 8.0, 1.2 Hz, 6-H), 7.26 (1 H, d, *J* = 8.0 Hz, 3-H), 7.32 (1 H, t, *J* = 8.0 Hz, 7-H), 7.76 (1 H, ddd, *J* = 8.0, 1.2, 0.5 Hz, 8-H).
- 23. Somei, M.; Karasawa, Y.; Shoda, T.; Kaneko, C. Chem. Pharm. Bull. 1981, 29, 249.
- 24. NaNO₂ (1.07 g, 15.5 mmol) in H₂O (5.0 mL) was added to 12 (2.49 g, 15.5 mmol) in aq. H₂SO₄ (2 M, 80 mL) at < 5°C. KBr (3.65 g, 31 mmol) and CuBr (4.41 g, 31 mmol) were added. The mixture was stirred for 2 h and was extracted (EtOAc). Evaporation, chromatography (EtOAc / hexane 1:6) and recrystallisation (EtOAc / hexane) gave 13 (1.22 g, 35%), white crystals: mp 113-115°C; NMR (CDCl₃) δ 6.87 (1 H, dd, J = 6.0, 0.7 Hz, 4-H), 7.23 (1 H, d, J = 6.0 Hz, 3-H), 7.39 (1 H, t, J = 7.9 Hz, 7-H), 7.95 (1 H, dd, J = 7.9, 1.1 Hz, 6-H), 8.29 (1 H, ddd, J = 7.9, 1.1, 0.7 Hz, 8-H); MS (FAB) m/z 226.9534 (M) (C₉H₅⁸¹BrO₂ requires 226.9531), 224.9551 (M) (C₉H₅⁷⁹BrO₂ requires 224.9551). Analysis: C, 48.0; H, 2.26. C₉H₅BrO₂ requires C, 48.04; H, 2.24%.
- 25. Compound **13** (601 mg, 2.7 mmol) was boiled under reflux in 2-methoxyethanol (50 mL) saturated with NH₃ for 8 h. Evaporation and recrystallisation (MeCN) gave **14** (428 mg, 71%), white crystals: mp 220-222°C (lit. 12 mp 242-244°C); NMR ((CD₃)₂SO) δ 6.66 (1 H, d, *J* = 7.9 Hz, 4-H), 7.35 (1 H, dd, *J* = 8.1, 7.7 Hz, 7-H), 7.42 (1 H, d, *J* = 7.9 Hz, 3-H), 8.03 (1 H, d, *J* = 7.7 Hz, 6-H), 8.21 (1 H, d, *J* = 8.1 Hz, 6-H), 11.55 (1 H, brs, NH).
- 26. LiN(SiMe₃)₂ (1.0 M in THF, 340 μ L, 340 μ mol) was stirred with 14 (58 mg, 260 μ mol) in DMF (1.0 mL) for 2 h. 10 (37 mg, 210 μ mol) in DMF (1.0 mL) and NaI (2 mg) were added and the mixture was stirred for 2 d. The evaporation residue, in EtOAc, was washed (H₂O, brine). Drying, evaporation and chromatography (EtOAc / hexane 1:2) gave 15 (66 mg, 85%), pale yellow solid: mp 208-210°C; NMR (CDCl₃) δ 3.99 (3 H, s, NMe), 5.23 (2 H, s, CH₂), 6.93 (1 H, dd, J = 8.4, 0.5 Hz, isoquinoline 4-H), 7.14 (1 H, d, J = 8.4 Hz, isoquinoline 3-H), 7.23 (1 H, s, imidazole 4-H), 7.38 (1 H, t, J = 8.1 Hz, isoquinoline 7-H), 7.93 (1 H, dd, J = 8.1, 1.1 Hz, isoquinoline 6-H), 8.39 (1 H, ddd, J = 8.2, 1.1, 0.5 Hz, isoquinoline 8-H); MS (EI) m/z 363.9983 (M) (12 C₁₄H₁₁⁸¹BrN₄O₃ requires 363.9994), 361.9999 (M) (12 C₁₄H₁₁⁷⁹BrN₄O₃ requires 362.0015), 347, 345, 318, 316, 140; Found: C, 46.4; H, 3.09; N, 15.0. C₁₄H₁₁BrN₄O₃ requires C, 46.30; H, 3.05; N, 15.43%.
- 27. HPLC analysis was performed with a Kromasil 10C18 semi-preparative column and a JASCO PU-986 preparative pump using methanol as eluant with flow rate 5 mL min⁻¹ with UV detection at 326 nm by a JASCO UV-975 detector. An injection volume of 20 μL was used.
- 28. NaBH₄ (2 mg) was stirred with the substrate (8, 14, or 15) (5 mg) and Pd / C (10%, 5 mg) in PrⁱOH (2.0 mL) and water (0.04 mL). At the time points, aliquots (100 μL) were removed, filtered (glass wool) and analysed by HPLC²⁷.
- 29. SnCl₂ (1.3 mg) was stirred with the substrate (**8**, **14**, or **15**) (0.5 mg) in MeOH (1.0 mL). At the time points, aliquots (100 μL) were removed, filtered (glass wool) and analysed by HPLC²⁷.
- 30. Varghese, A. J.; Whitmore, G. F. Cancer Res. 1980, 40, 2165.
- 31. Zn dust (10 mg) was stirred with the substrate (8, 14, or 15) (0.5 mg) and NH₄Cl (0.5 mg) in MeOH (0.95 mL) and water (0.05 mL). At the time points, aliquots (100 μL) were removed, filtered (glass wool) and analysed by HPLC²⁷.